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Abstract
i i

A metho d is propose d for the est imat ion of a gene ral

class of scalar linear time series models. The model takes the

form of a stochastic difference equation for the dependent variable

with exogenous variable inputs, and the disturbances are autocorrelated

through an autoregressive moving average process. In the present

paper an asymptotically efficient yet computationally simple

estimation procedure (in the time domain) is derived for this model.

The resulting estimator is shown to be asymptotically equivalent to

the maximum likelihood estimator and to possess a limiting multi-

variate normal distribution.
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1. INTRODUCTION

We consider the estimation of the parameters in the model

r k
(1) 

~ 
- z 

~~~~ -i 
= 

~ ~~~~ 
+ Ut,

1=1 i=1

p q
(2) ut - ~~~~~~~ = + z v ~€~~1, (t= . . .,-.1,O,1,...).

With the use of the lag operator ~ such that = the

model can also be written as

~
) A (~~)y~ = + Ut ,

where A(~~) = 1-a1~~
_ ... -at , and

(4) Ø(~~)u~ =

where Ø(~~)= 1_ Ø ~~. _ ... .-$
1~
#p, r(~.) = 1+y 1L -4- ... +Y q~~

Assumptions used in the estimation of this model are

(i) the E are independent and identically distributed with mean 0

and common variance ~

(ii) all roots of A(z) =0, ~(z) = 0, and F(z) =0 are greater
than 1 in absolute value and there are no roots common
to the three equations,

(iii) the exogenous variables xti are nonstochastic sequences
which satisfy

u r n  
~ 

Xt+m,iXt+n,j Q i j(n-m) =

T~~~~oo 
-

-- ----I - _ _

- 
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2.

exists for m,n= ,...,-1,0,1,..., and i,J=1,...,k, with

> 0.

The3e assumptions imply the following:

(iv) the infinite series A (z)~~ = ZX ~ z
t, Ø(z)~~ = Z~ !’ 1z

1, and

= 

0
8iz

1 all converge for ~zj <1 +~~, ~ >O ,

(v) the endogerious variable can be expressed as the “steady

state 3olution ” to the difference equation (3) as

k k oo

(5) 
~~~~~

= 
~ 8iA (~~)

’xti + A(~
y1ut = 

~ 
xt-j ~ 

+ Z
1=1 i=i. =0 ‘ =O~~

while the disturbance u~ can be expressed as the stationary

solution to the autoregressive moving average equation (4 ) as

q
(6) U

t ~~~~~~~~~ 
= 

~~ ~
i~j~ t-i-j’ 

y
0=1,

(vi) there exists a spectral distribution matrix F
~
(X) =

such that c mm (h) = ~ et~~dF~~(X), (m,n=1,. . .,k; h:0,1,. . . )

This can be expressed more compactly as P(h) = e ciF
~
(X),

where P(h) denotes the matrix whose (m,n)th element is

(See Hannari [14], Chapter 2, or Anderson [3] , Chapter 7, for
details concerning this assert.on.)

_________ ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ ~
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3.

Several techniques have previously been introduced for

estimating special cases of the above model (3)_ (4). For example,

when P1 = ... =B k =O and 0(z) =1 the model reduces to

=

the classical time series ARMA model. Early methods of estimation

of this model include those propo sed by Durbth [9] , [10], and
Walker [30], [31]. Durbin ’ s method relies on approximating the moving

q
average process v.~ = + 

~ ~
‘
~~t-~ 

by a high-order autoregression,
i=1

while Walker’s procedure maximizes, with respect to the a1 and

the approximate likelihood function of the first n sample serial

correlations of y.~. More recently , Hannan [13], Clevenson [7], and

Parzen [24] have constructed estimates based on Fourier transformation

of the data and spectral methods. Akaike [1] has shown that Hannan’ s

procedure is approximately a Newton-Raphson method in the frequency

domain, while the methods of Clevenson and Parzen are approximations

to the method of scoring in the frequency domain (using an alternative

parametrization of the moving average process.). The method of Box

and Jenkins [5] is to maximize the likelihood function by computing

its value at a grid of trial values of the parameters. They also

consider nonlinear least squares estimation of the parameters by

numerical methods. Anderson [4] estimates the parameters using the

method of scoring and Newton-Raphson methods (in the time domain)

under the assumption Y0 = Y..j= ... =
~~1-r

=° and €
~~~~~

€
~~~~~~~

• • •  ‘
~~1-q °

The method that will be presented later in this paper for estimating

the more general linear model (3)_ (4) is related to Anderson ’ s method

for this special case.

_ _ _ _ _ _  
_ _ _ _ _  -



4.

For the model (3)-(4) containing exogenous variables,

methods of estimation have been presented only in special cases.

For the J.Lfference equation model (3 ) with pure autoregressive errors

in (4), Wallis [33 ] has suggested an Aitken generalized least

squares estimator of the parameters in (3) using an estimate of the

covariance matrix of the error term u~. However, as noted by

Ainemiya and Fuller [2], Maddala [21] and others, this method is not

asymptotically efficient due to the presence of lagged values of

the endogenous variable 
~t 

as regressors. Recently Hatanaka [17]

has pre sented an efficient two-step estimation procedure for this model

which is identical to the procedure that will be proposed in the

present paper for this special case. It will be shown that Hatanaka’ s

procedure is approximately a Newton-Raphson method in the time domain.

For the special case of a moving average errors model in (14) with

equality of moving average and difference equation coefficients (i.e.,

the di stributed lag model with = -a1), Dhrymes [8] has presented

a method of estimation based on Newton-Raphson techniques which is

similar to the method to be proposed. Estimation of the model

containing a general moving average errors process in (4 ) has been

considered by Hannan and Nicholls [16] using Fourier transformed

data. Phillips [25], Trivedi [29], and Henciry and Trivedi [18]

have estimated this same model by iterative solution of the maximum

likelihood equations, their methods being somewhat similar in this

special case to the method to be presented in this paper. An excellent

summary of methods of estimation of the difference equation model (3) with

moving average disturbances in (4) is provided by Nicholls, Pagan,

and Terrell [23]. Box and Jenkins [5] and Pierce [27 1 have considered

V ~ f~-



5.

the estimation by iterative nonlinear least squares methods of

a general transfer function model which is similar but not identical

to the model to be considered here.

The purpose of the present paper is to obtain an estimation

procedure for the linear time series model (3)-()4.) which is

asymptotically efficient yet computationally simple. The method

to be proposed uses the maximum likelihood approach and is based

on Newton-Raphson techniques applied to the likelihood equations.

The resulting “Newton-Raphson” estimator is shown to be asymptotically

equivalent to the maximum likelihood estimator and to possess a

limiting multivariate normal distribution .

2. ThE METHOD OF ESTIMATION

For the estimation of the parameters in the model (3)-(4),

let us suppose that the observations

~
‘t’ ~

‘t-l~~ ‘~
‘t-r’ ~~~~ . •~

Xtk) are available for t=1,.. .,T.

To motivate the estimation procedure we will assume the are

normally distributed and use the maximum likelihood approach. To

simplify the form of the likelihood function certain assumptions

will be made concerning the initial observations and disturbances.

This is necessary due to the dynamic time series structure of the

model, and In particular to the complicated form of the inverse of

the covariance matrix of consecutive observations from a moving

average process. First, we consider the initial observations

as fixed, and estimate from the likelihood

~~~TI _ _ _ _ _ _ _ _ _ _ _ _  .:~~~~~~~~~
— ~V

V
~~~~

V
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V



6.

function conditional on these values. Second, we assume that

the initial disturbances Ep+1_q~ • 
~~~~~~~~ 

are equal to their un-

conditional expectations, which are 0. Then introducing the

(T-p) x (T-p) lag matrix L which has l’ s on the diagonal

directly below the main diagonal and 0’ s elsewhere, we define

the (T-p) x (T-p) matrix

q
G = I +  Z

1=1

T-p-i.
(Note that by condition (iv) of Section 1, G 1 

= Z o iL1.)
1=0

Thus defining the vectors

= p+1’ ’~
’T~

’
’ X~ = (xp+j,js... xTi)

’ (i= 1,...,k),

U = (u~÷1,. . .,UT), € = (€
~~+j~~

. .

we can express the entire (modified) model in vector form as

r k
(7) Y - Z a1~~

1Y = Z ~~X1 + U,i=i. 1=1

q
(8) U -  Z $~~~u = e +  z y1L € ,i=1 i=1

where It should be noted that af~Y= ~
‘p’”’~

’T-1~~’ ~
u = (uP...,UT...l)’J

while Li = (o , 
~p+1’~~

•
~~’~~T-1)• The equations (7)- (8)  can be

written more compactly as

k
(9) A(~ )Y = ZB 1X1 + U,

L ~~~~~~ 

- 
‘V 

-



7.

(10) O(~)u = G€ .

On the assumption of normality of the €

~~~~
, the (modif ied.)

likelihood function of the observation s y~~11. . .,y~, 
given

is

F = 
1 exp 

~~
- ~~~~~~~ ( Ø ( L) U ) ’G~~ G~~( 0 (L) U ) l ,

(2)~ (T P)(02)~~
(T P) L 2o J

where U is expressible in terms of the observable quantities Y

and X1 through equation (9). Then using the fact that

...1 G 1 = -G~
1(—1- G)G

1 and —~~-- G = Lm,

~
vm ~

‘m

we obtain the partial derivatives

~logF j
~~ (~

m
O(~ )Y)

1Gl-lG-l(O(~~)U), (m=l,..

~iogF = —.
~~~~

. (0(~ )Xm)
’G’~

1G
~
’(0(

~
•) U ) , (m=i,. . .,k),

~logF = J~~ (~
mU)l G

l_ l
G-i(0(af)U) , (m=1,.. .,p),

- - - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—-



8.
_ _ _ _  = ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (m= 1, . . . ,q ) .

Defining the vector

8 = (a1, . .  ., a
r , B1,.. ‘~~

Bk~ ~1.
,. 

~~~~~~~~~~~~ 
~Y i, .  .

and the matr ix

w = (~Ø(~ )Y,.. ~rØ(,)~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

we can express these derivatives in vector form as

(i i) ~ logF 
= _!2. W’G’1 G

1(Ø (~~)U).

Setting these derivatives equal to 0 leads to maximum likelihood

equations which are nonlinear in the parameters 8. Thus these

equations can only be solved by numerical procedures such as the

Newton-Raphson method. The Newton-Raphson method for solving

equation (11) is based on the Taylor’ s expansion

alogF = ~logF 
+ ~

2logF~ (e -
~e~e ’ e~

where II 8* _ 8
0IHZ~I8 

~~~~ 
and 

~~~ 
denotes the usual Euclidean

norm. The Newton-Raphson equations for an approximate maximum

likelihood estimator § are

(12) - ( b e )  = ~iogF~ 

-—~~~~~~~~~~ -- - V - - -
~~~~~

- 
~~~~~~~~~~~~~~~~~~~~~~~~~ - - - --- -.-  - -  - -

V 
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9.

where ~ is an ini t ial  estimate of 8. Thus the Hessian of

log F, ~ lo~ F 
, play s a dominan t role in the Newton-Raphson

~e~8 2
method. It can be shown that an approximation to - ~~ 1o~F is

~e~8
given by —.L~ W ’G’1 G 1W. This approximation involves the omitting

of certain terms in the Hessian of log F which , when divided by T ,

converge to 0 in probability as T-* c~~. We will express this

“ asymptotic ” approximation as

(13) - ~
2lo€F 

—
~~~~~~

. W’G’1 G 1W.
a

To obta in  the Newton-Raphson est imator  of B , we assume

that we have an initial  estimate,

= (ar. . W1~~~~~
Wic~ ~

‘
1’. 

~~~~~~~~~~~~~ ~~~~ 
. •~~7q)

’
~ which is

a con s istent e stimate of 8 to the order f t in probability , i.e.,

80 - e = O~(T~~) .  This es t imate  may be obtained as fo l lows:

(a) Obtain consistent estimates 
~~~~~~~~~ 

. . ,a~ , 
~~~~~ ‘~~k from

equation (7) using the method. of instrumental variables estimation.

(See Liviatan [20] and Dhrynies [8], Chapter 5). Then compute

the residuals

r k
- 

~~ ~~~~~~ 
- 

~ ~i
xti, (t=1,. .

i=i i=l

(b) Using the calculated. residuals 
~~~~~‘ 

we obtain consistent

estimates of the autocovariances a ( s )  E (u t u t 5 ), s=O ,1, . . .,

of the U
t 

as

_____________ ____________ - -V--—-—— .—— -——.-——-,.—’—— —.. .- ~~ — -- 
- -



T
c(s) = Z ~~~~~~~~~ =c(-s), (s=o,l,...,p+q),

T t=s+1

‘ I  T
where ü = ~~~

. Z u~~. We then est imate the pa ram eter: Ø~
T t=1

consistently by solving the Yule-Walker type equations

p
c(s) — z 

~i
c(s_i) = 0, (s=q+1,...,q+p).

i=1

( c )  Having obtained the es t imates  
~~~~~~~

, we form

c~~( s )  = ~~~~~. ~~ c ( s +j - L ) = c~~
(- s) ,  s=O ,1, . . . , q, where

j =O 2=0 ~

= -1, and

q i~~ 
q

= — Z c~,( s ) e  ~~~= — [c
~
(O) + 2 Z c~

(s)co s sX ], -7r<X<lr.
2ir s=-q 2ir s=1

These are consistent estimates of the autocovariances and

spectral density, respectively, of the moving average process
q

V
t 

= + Z ~~~~~~~ ~~~~~ ~~(x) > 0 for -ir< k< ir , then we
i=1

may factor ize  this in the form
q ihX 2

= — Z
2ir h=O

where the 
~h 

are real with ~~~=1 . The consistent estimates

are obtained as the solution to the equations

q-s
c
~
(s) = ~2 ~ ~h 

V h+s (h=O,1, .  . .,q),
h=0

which may be solved using an algorithm of Wilson [35].

Consistent estimates of the 
~h 

may also be obtained by a metnod

which does not require the factorizing of the spectral density

~~
(x )  (see Hann an [13)).

- -  - 
—-- ::... _..~:_ , _ L~~~~~~~ 

- --- -- ~~~~~~ - 

- _ 

V

- 1___ ~~ -~~~~~



11.

Now we let

A(~ ) = 1-ã11- 
... _ a~~, 

~~~~~~ 
~~~~~~

— 
q _~ ~G = I + Z v . L
1=1 ~

k
U = ~ (~~)Y - z ~1X1, =

i=1

= (L~(~~)Y,. . ~~~~~~~~~~~~~~~~ . . ~~~~~~~~~ 
. ~~~~ Li,. ..,L~~ ).

Then using (11) and (13) in equation (12), we obtain the following

Newton-Raphson equations ror ~~,

~~~~~~~~~~~ -e s) =

Since

r k p

~~ +~ ‘(~ )U = z ~~~~~~(~~~y +  ~ + 
~i=1 i=1 i=i_

+ 

~~~~ 

V~L
1
~ +

= ~(~ )(Y-U) + +

= ~(a~)Y +

the Newton-Raphson equations can be written in the fo rm

(14) ~~~~~~ iTh = 
1
~~

1(~’(~ )Y + U -

The Newton-Raphson solution ~ to equation (14) can be interpreted

as the generalized least squares solution to the identity

V - —----,-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ -
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(Is) ~(~~)Y+~~ -~~

r . k p q
= 

~ 
at~~

1
~
(L)Y + 

~ ~~~~~~~~ 
+ U 4- Z Y~ L C + G€

i=1 i=1 i=:3~ i=1

q~~~
+ z (

~~~~

‘

~~~~~
-

~~~~~~~
i ) (

~~~~ 
U-z U) + z (

~
.
~j

_ v
i)(L ~~- L  € ) ,

i=1 i=1

where the last two terms on the right hand side of the equation are

to be neglected and the error term ~~~€ = € + Z ~~ Lt € is treated
i=1

as having covariance matrix ~~~~~~~~~~~~~~~~~

V 

We conclude this section by discussing briefly the computations

that are needed to complete the estimation procedure and obtain the

estimator ~ as the solution to equation (14). Once the initial

estimate and the residuals have been obtained, we compute

= 
~~~~~~~~ 

Z 
~~~~ 

for t=p+1-r,...,T,

and similarly compute 
~
‘(
~~

xtj, i=1,.. .,k, and 
~~~~~~~~~ 

for

t=p+l,.. . ,T.~ Next we obtain the vector ~ = ~~1~(~~)~3 recursively

from the equation ~~~ = ~~(~~ )U as

= 
~~~~~~~ 

- 

~~~~ ~~~~~~ 
for t=p+1,. . .,T,

where 
~p+1...q 

= •
~~~~~

• = = 0. Then forming the matrix ~ as

defined above, we compute the columns of the matrix of “independent”

variables ~ = recursively from ~~ = ~ similar to the

computation of ~, and we also compute the vector of the “dependent”

- —  -_ — —- — - ~~~~~~~~~~~~~~~~~~~ 
- - - ~~~~~~~~~~~~~~~~~~~~~~~~~ V 

- 
— ~~_ _~ V ~~~~~~

-~~~~~~~~~~~~ - ~~~~~~~

. 
V



‘z~ir~ ablc 
1
(~~(~~) Y  + U — 

~~
) r e cu r s i v e l y  I’rom

= ~
‘(~~~~Y + U- ~~~. Fir Val ly , t u e  e:t~~c a t o r  ~ is  sirm ly t:~

lea s t  :~~~are : :c lut i ~~n to the r -:-~~r~~ssion  f  ~ on W , I . e .

= ( V ~~~l~~~~~

)

_
~~~~~~~ l~~~~ 

. 
V

~~~. THE ASYMPTOTIC ~L S T R i B U T T T h  OF THE TI~~~.ii R

S nce tne  exact finite V: ampie d i ct r ib u t ior .  ot’ tr e  p r c p c : e d

esclmatc r ~ is too conoJJcate~ to ce obtained in closed form,

~,VJ .  ~~~~ c c n : i d er  o n l y  a s y mp t o tic  p r coe r ti e :  of the e :t i n e V to r a:

‘ -‘-
~~~~~ . To ~e s cr i oe  the asymt t c tic  :tribu,ticn of the estimator

we L nt r c ,~u ce  the m a t r i c e s  M , ~, , H , Z, K , ~ , T , an~i 0 wncse

(n , n ) t Y i  e lements  are defined re ’cect~ vely by

- .  . , . -
~~~ ~~~~~. .  .~~~~~..

‘V = j~~ r”. — . . -
~~~~ .)  ,- ~~~

‘ ) . ‘
~~~~~ ;

U

-

• ., — _ ,c - -

~ 
( .

~~ ~~~ ~~.. ,

.1=1 ~VJ

= ~~~ ( d i .L’
~_____ 

~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ (n,n=l,.. .,r),
-~~

where ~ = (h , .  .

= i t~ ~
( : ~ A(~~)~~~~~~~~~~~~~~~~ G : ’ ~~) :•:, ‘

k . ict\  -
~~~ ~~~

.

= 2.~ ~~ . 
‘ 

• ,  . . -

j=i. V 
—

~~~ ~~
(
~~~~~_ A

) 1 (
~~~~~~~~~ . ) i ~~~~

(r-.=i ,...,r; n=i ,...,~~,

-~ ~~~~~ 
— 

‘~~ ‘~L - -.‘~~~~~~~~ 
‘~~ 

———-_ V

T~~- •~—~ -

• _4__ -



14.

= l L,n ~~~(~~~~~~~~
. ‘ - \  I

= (m , r .=~ , . . . , .-~,

l im

a
2 ~~~ V

’
7- V
_ V V

.\ \  - 

7’
V 

,~~~~~ - 
~~~~~~~~ 

) I

i•

-

= 
u
_ _ 

— — 

_
I 

d~ (r= _ , ~~= ,
V 

V 
— — ..h e  ;.:~~e-

= 1i.~ ~4A~~~: ~~~~~~~ 
# 

~~

I ~~- ; 1  ( L n € ) ]

C
2 7- :(‘~ V -~~~~~~~

’. 

Ir ’V~~~ ~.= 

~~~~~ e ) ( e ~~~~) 
L~~’ 

— —~~~~~ i)~

l im

2
= __ 

~~~~~~~ 
t ø ( e ~ ’~’) ~~ 

( i )
)

L 

..



1~~.

~~~-ri

— 
V~, / VV V V :  :,

- - i~~~~y fl

~~

— — 
~~~( “ V_ :  ‘I \

= ~~~

— — ~~~~~~~ 

. HI.... , s ;  n -~- 1 . .

Then we c an stat e tn~ t’cilcw~ng

Theorem. For th~ mod el (1) arc (
~~ ) snd~ r a: sr~rt~ Ln.c ( i ) — ( l i i )

given in Sect ion 1, let ~ i e n V c t e  the e:t~mato r of

= 

~~i’ ”’~~r’ ~~~~~~~~~ ~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~ 

. as obtaIr e~ f cc m

equaticn (14). Then the distrinstion of -~~/T (~~~ 
- e)  converges to

a mnltivariate normal distribution as ~~~~ ~itn mean vector 0

and cc v a r i a nc e  m a t r i x  equal to

2 
-

~~~

(16) a~ V
1 

= a2 
( 

~ o o
\ 2 ’ 0

0 O ’ T

Befor~V c t s c u V ~stng  the proof of the theorem , we make the

following commen ts:

(a) The matrix V i - f ~ ned by (16) can be seen  to equal



16.
lim ~ E(W

’G’1 G~~W) = u r n  - 
~~~~~~ 

_ _ _ _ _

- T T ~ 8~~8

Thus the asymptot ic di str ibution of § is identical to the asymptot ic

distribution of the maximum likelihood estimato r based on the

assumpt ion  of normality of the € ,
~
, so that ~ is asymptot ically

eft’i c ient relative to the maximum likelihood estimator when the

itstsrbances are normally distributed.

(b) The p roof to be given will show that ~ converges to e in

pro bability as T -,

(c) An asymptotically efficient estimate of ~
2 is given by

k k

~ ~1~
(
~~)Xi)G 

1(A(~~)ø(~~)Y- ~T-p i=1 1=1

where the “
~~~~~

“ denotes that these quantities are to be evaluates

at ~~~ . The estImator will be a symptotically uncorrelated wi th

~~~. Similarly, the covariance mat r ix  of ~ can be es t imated by

~2(~~l~~I 
_1
~~i~) 

-1.

(ci) The asymptotic properties of the est imator ~ do not require

an iterative procedure, only an initial consistent e St i m V ~te. However,

in practice one may want to iterate the least squares solution to (14).

In particular we suggest a second iteration so that an asymptotically

efficient estimate of the covariance matrix of the estimator

is obtained simply as a by-pro duct of the least squares estimation.

(e) As we have mentioned in Section 1, the estimation ci’ various

special cases of the model (1)-(2) has been considered. by others.

V -— —  - —~~..-— - V V -

- - -  -----—- --
~~~~
----

~~~



17.

We now compare the estimator proposed in this paper wi th  some of

the previous ly  proposed es t imators  for  these special cases.  For

the t ime se r ies  AF.MA model

A(L)yt =

equation (15) reduces to

q _ 
~ 

r -~~~~ — 
q

Y + Z v~ L ~ = Z Y + ~~ v 1L
1€ + G€ + E ( y i - y 1) ( L  € - L  e ) .

i=l 1=1 i=1 1=1

The general ized least squares est imation procedure  which resul ts

from th i s  equation is similar to Anderson ’ s (see [4]) Newton-Raphson V

metho d except  for  the t rea tment  of in i t ia l  values of the y
~
, i. e. ,

Anderson uses LiY in place of ~
1Y. In the distributed lag model

k
A(~~)y t = 

~~ 
B~~X~ 1 + A(

~
)€ t,

i=1

equation (15) takes the form

r . r k r
Y- E ~ L

1
~ = Z ai(~~

Y_ L
~~) 

+ Z B .X . + ~~~€ - ~ (a
i

_ a
i

) ( L 1
~~~

_ L
i
E),

i=1. ~~~~ 
1 1

r
where ~ = I - Z L • The estimation of this equation by

i=1
general ized least squares is related to a metho d suggested by

Dhryines [81, Chapter 9. For the general moving average errors model

k
A(
~
)y
~ ~ 

+

i=l

the identity (15) become s

- —V—--- V. - — ~___ ._ V. ,— — — — — -- 

~~~~~ VVV ~ ~~~~~~~~~~~ 
- - -

V - 

~~~~~~~~~~~~~~~ - 
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q _ 

~~~~~ 

r k q 
~~~~~ 

—

Y + : ’1’ .L e =
1=1. ~ i=1 i=i. 1=1.

q 
—

+ Z (v 1 -~~1) (L€-L
1€).

i=1.

The estimation of this identity by generalize i least squares is

similar to the method of Phillips [25] excep t for the treatment

at’ the value s of the initial disturbances € ,
~~~
, i . e . ,  Phillips

considers these values as parameters to be estimated. Finally, for

the pure autoregressive errors model

= z ~~~ + u~~, Ø(L)u t =

Hatanaka [17 ] has suggested a method identical to the least square s

est imation of the ident i ty

p r k p
+ ~ ~~~

1U = z a~~
t
~(~~)Y + Z B 1~

(
~~

)X i + ~~ + C

1=1 1=1. i=1 i=1.

p i i
+ Z (~~i~~~S~i ) ( a ~ tT-~~ U ) ,

i= 1

which is simply (15) in this special case.

Proof of Theorem: We shall not go into great detail here but merely

give an outline of the proof. First, we can ignore the effect of

the modification of the initial disturbances €

~~~~

, and hence the use

of the lag matrix G in place of the lag operator F(~~), since

the modification has a negligible effect as T -* ~ and the asymptotic

properties of the estimator are not affected by this modification

V ~~~~~~~ 

V _ __ __ __ _ _  — V ~~ __V ~~•V__ V V~~ 

- 

———- V 

-
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( see Anderson [4 ] ) .  Then using the (modified) identity (15)

and equation ( 14 ) ,  we have

(17) ~ = (~~~~~~
1~

_1
~ )

1 ~~~~~~~~~~~~~~~~~~ (~
‘(~~)Y + ~~~ -?)

= (
~‘~

‘ 1
~

1
~r
l ~r l~~:l~~i.~ :_ 1 

~~~ +

+ 

~~1 i - øi)( U-
~~

U)  + - )(L1~ -

It follows that

(18) -~/T (
~~ 

- 8) = (
~~ 

~~~l~~~~I 1  1~I) 1

T

+ (
~~ 

W ’ ’ ~~~~W ) ’ . 

i=i~ 
(
~~ 

~~)
1 

~~
I
~~

I i i
(~~

iU~~~~~
iU )

+ 

~~~~~~ ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~

Now each of the terms -VT ( )  ! I (~~
it J a fitj) on the

right hand side of (18) has a probability limit equal to 0 as

T-~~. This is tru e since -vT (~~i -Ø~
) is bounded in probability

as T-*~ by the consistency of 
~~~~~~~

, while 2. W~~
I 1

~
_l
(~

iU..~~
iu)

converges to 0 in probability as T-’- oo, again by consistency of

the initial estimates. The same argument also applies to the terms

involving 
~~ 

on the right side of (18). Hence we can conclude that

the entire second term on the right hand side of (18) converges to 0

_________  - V~~ V _ V V J~~~~. 

-
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in p r o b a b i l i t y  as T-~’~~, since we wil l  show that the matrix

(~
.. ~~~1 1~~~1~~)

_ 1 
has a f i n i t e  probability limit as T~~~oo . It

T
also follows by the consistency of the initial estimate 8~ that

if the matrix ~ W
’G’1 G 1W possesses a finite pronability limit

T
as T-~~~, then the ma trix ~ W

’G’1 G 1W = ~~ will
T 8o T

have the same probability limit. And f inally, the l imi t ing

d i s t r i bu t ion  of the vector  ~~
. W~~~~

’ 1
€ will  be the same as that of

~~~
. W ’G ’ 1 € , since the dif ference between the two vectors ,

~ (~~
1
~~-G

1W)’€ , converges to 0 in probability as T-~~oo . This

follows from the fac t  that all the elements in the vector  of d i f f e rence ..

above are essentially in the form of products of two terms, one of

which Involves -
~ /~~ times elements of the difference (e~ 

- 8) and

the othe r of which Involves elements of the vector ~ W
’G~~

1€ . Then
T

since plim -
~~~ W ’G~~

1€ = 0 and is a consistent estimate of 8
T - ~~~ T

to the order T~~ in probability , arguments similar to those

used for the other terms in equation (18) can also be applied to the

vector of differences 
~~

- (~~
1
~

’ -G~
’W)’€. Thus we see from the above

arguments that the limiting distribution of ~/T (~~~ 
- 9) will be

identical to that of (~~
. W’G’1 G~~W)~~ -~-W~

’G’~~ € . Hence it follows
T

that the results of the Theorem will be establ ished once we show that

( I )  plim ~ W ’ G ’~~
1G 1W = u r n  

~~
. E(W ’G ’ 1G~~ W) = V,

T - ~~co T T-~~oo T

V --



21.

where the matrix V is defined by (16), and

(II) ~~
. W’G’ 1 € has a limiting normal distribution with mean

vector 0 and covariance matr ix  equal to a2V.

Proof of (I). We consider the probability limit of a typical

element of the matrix ~~~
. W ’G’1 G

1W. For example, us ing equations
T

(9 ) ,  (10), and (5), the fact that E(XtiE S) = 0 for  all

t,s= . . .,-.1,0,1,... and i=1,.. .,k, we have

(19) u r n  2~_ E ( -  ~
2logF 

~T -
~~ T ~

v n~a

= lirn ~
T -~ T

= lim ~ E [(  ~~~ 8~~
mA(~~)

_l
ø(~ )X +

T -~~~~T 1=1

• G ’ 1G 1(L~€)]

= lim ~~~. E[(~ mA(~ )
_i
~~)1(G

_l
Ln1€ )1

T -~~ T

T t-p-n-I -

= l ixn ~.E[ Z Z Z ~~X €
T -~~ T t=p+n-4-1 u=O v=0 u v t-n-u t-m-v

t-p -n- i.

u~O 
ôuXu+n m) for m < n

2 T
= lim 2.... z
T ~ co T t=p+n+1 t-p-n-1.

6 A , for m > n
u=0 u+m-n U —

~~~~~~~~~~~~~~~~~~~~~ 
-  - — 

~~~~~~~~~~~~~~~ - - -

~ VVV —,
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z ( T-n-p-u) 6 u~’u+n-m ’ for  m <
= u r n  —~~ u=O

T - ~~~ T ’
~
~T_p-n-1
V z (T-n-p-u )  8 u+m_n X u for  m >

u=0

Z ôuXu+n_m~ 
for m I

2 u=0
= a

u=O u+m-n u for  m > n

e
m

~~~
1
~~~

= — I dX
2w A (e~~)F(e~~~)

= t~~_fl~ (m=1,. . .,r;

In obtaining the above limit , we have used the fact  that the

Cesaro summation of a convergent series converges to that 
sum (see

Anderson [3]~ 
Lemma 8 .3 . 1) .  Also, to obtain ‘tm-n 

as the probability

limit of the quantity in (19), first we have

(20)
T

T t-p-n-1 t-p-i.
= 2 E[ Z Z 6 6~

A (
~~y

1
ø(
~~
)xt

T t=p+n+1 u=0 v=0 
U -m-v , -n-u

T t-p-n- 1 s-p-n-I t-p-1 s-p-i
z

T t,s=p+n+1 u=0 ,j=0 v=0 J~Q 
U 3 V

V 
--  - 

VV

V V
~~~~~~~~~~~~~~~~~~~~~~~~ V .V~~~~~~~~_  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- -V______

y
V 

— — -  -
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- A (~~) 
_i
Ø(#) Xt_rn_v, iA~~~ 

1Ø(~~) Xs_m4, 1E( ~t n u ~ ~~_ f l~~~~~~ )

2 T t-ç-n-1 T-t-1-u t-p-1 t-u+j -p- 1
= Z

T~ t=p-3-n+1. u=O j =O v=O L= 0 u 3

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ i

Hence (20)  is less than

2 2 T 4
2.~~. max A(

~~)~
1ø(~~

)Xt_rn,i I Z ( ~~

T p+1<t<T 
t=p+n+ 1 u=O

2 2 L~.2.... max IA (~~)
1
~ (~~)xt rn ~ z I6~~I)T p-i-1<t<T ‘ u=O

which goes to 0 as T -* ~ because of conditions (ii) and (iii)

of Section 1. ( see also Anderson [3] , Lemma 2.6.1). Thus it follows

by Tchebychev ’s inequality that the first of the two terms in (19)

converges to 0 in probability as T -
~~ ~~~ . The second term in (19) V

is

T t-p-n- 1
(21 ) 

1 (~~mA(~~)
_l

€ ) l ( G _l
Ln € ) Z ~ 

Ô UX V E t n-u~ t-rn-v
T T t=p+n+1 u=O v=0

Now for fixed v = 0,1,...,

T t-p-n-1 T t-p-n-1
E — 6 €  € < —  Z

T t=p+n+ 1 u=0 U t n u  t-m-v — T t=p+ri+ 1 u=O

I6 u1Ek t_n..uEt ...m_v I

~ lo ul,u=0

-
, 

~~~~~~~~~~~~~~~~ ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-V 
V
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so that

T t-p-n- 1
( 2 2 )  lim E~ ~ Z X v~~ € t n u € t m v ~s -

~ 
T v= s+1 t=p+n+ 1 u=O

lim Z l~~
I . ( 2 

~ I6~ I) = 0,
s -, v=s+1 u=0

unifo rmly in T. Then Ma rkov ’ s inequality, P( lx i > E) I 
El Xl

E

for  any random variable X and any E > 0, implies that the term

in (22) converges to 0 in probability as s -
~~ unifo rmly in T.

Also , the quanti t ies

1 T t-p-n-1 
~ 

T-p-n- 1 T
- .  

— 6 €  = — 6 €  €

T t=p+n+1 u=O U t-n-u t-m-v T u=O ‘~=p+n+u+1 t-n-u t-m-

have pro babil i ty limits  as T -
~~ ~ equal to for

v=max (O ,n-m) Thus it follows from this last result and (22 ~

( s~~e also An derson [3], Theorem 7.7.1) that the second term in (19),

T t-p-n- 1
I Z 6 X €  €
— u V t-n--u t-m-vT t=p÷n+ 1 u=0 v=O

s T t-p-n-i.
z 6 \ €

T v=O t=p+n4-1 U=O U V t -n-u t-m-v

T t-p-n-1
Z Z Z 6 X €

T v= s+1 t=p+n+1 n=0 U V t-n-u t-m-v

V- V. ---—- -- * --- — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

V ~~~~~~

- V V~~ V V V  -
~~~~~~~ 

- - - V -  - 
~~

V -- -

—~~~~~ -s-. 
V * ,~~~~~~~~
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converge s in pro bability as T -
~~ ~~~ to

lim 
~ 

6 v~ v+n-m ’ for  m n
2 S~~~~~~ v=0a S

u r n  Z ô v+rn_n X v~ 
for  m > n ,

s - *~~ v=0

which is just ;tm n  as given in (19). (The argument used here is

similar to that given in the proof of Theorem 1 of Hannan and Heyde

[15], page 2060) . The same type of a rgument may be used to

e:tablish the probability limits for the other elements of the

matrix

~ W
I GI 1 G

_1
W.

T

Proof of (II): To establish the asymp tot ic  no rmality or
11,~4 W ’G ’ 1 € ,

we con sider the asymptotic behavior of a single component. For

example , again using (9), (10), and (5), we have

(23) 2 .  ~logF = ~~ (~~ ø(~~)Y)
’G’~~~€-~/T ~

am

= ~~~~~~~~~ (
1~1~i~

mA(~r
lø(d)x I) 1G1l € +

T t-p-i. k
= .

~~
. 

~ 
[( Z 

~ 
6u~ i

A(
~~)~

1
ø(
~~
)Xt m u  j) €

-~/~ t=p+1 u=0 i=1. ‘ t

+ A(
~ )~

1€ t m € t]

- I 
. 

~~~~~~~~~~~~~~~~ 
V.____ _ _  _ _
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T t-p-1. K 1

= ~ 
[ (  Z Z 6~~~1A (~~) ø(~~

)Xt_m_u ,i)E t
~~~~~~~~ t=p+i. u=0 i=1

+ 

u=0 ~~~ t

T
+ ±. 

~ Z X € t m € t~~~~~ t=p+1 u=n+ 1

E Zm + R
~~
,

wr e re

T
( 2 4 )  Z = ~~~

. Z W~Th 
~~~ t=p+ 1 ~

t-p-1 k n
(25) ~~ = ( z z ~~~~~~~~~~~~~~~~~~~~~~~~~ + 

~~ 
X u€ t_m_u Etu=0 i=~ u—

(t=p+1,. .

and

T
(26) IL = Z X u € t m u € t~~n 

~~~ 
t=p+1 u=n+1.

Now for all T > p,

(27) E ( R ~~~) = Z X~ X~ E(€ t m u Et€ s m v € s)T t, s=p+i. u, v=n+i.

4 T 2
= z x

T t=p+1 u=n+I U

u=n+i.

________________________V - - ~_____~ V _ V _-V — V V — 
~~ ~~~~~~~ 
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and u r n  = 0 since 
~ X~ converges.  For fixed n, ~~~u=0

has mean 0 a r s  var iance  equal to

t r._ 1 k 2 4 n
= ( 

~~~~~ . .z 6
u~ i

A ’
~~~~

)xt_m_u ,i)
2 a + a ~ A~~.u=u i=1 u=0

The ccvariance between and W~~ , t�’s, is 0 and

- t-p-1 k
= ( z z ó u8 j A 1ø~~~~xt_ m_ u i ) 2 

~2
u=0 i=1

2 n
+ a XuXv€ t m € t mu , v=0

t-p-1 K
+ 202( ~ z 6u~ i

A(
~~)~
’ø(

~~
)Xt_m_u ,i) ~ XuEt-m-uu=0 i=1 u=0

T
V 

Thus letting V~~ = Z E(W
~~ l€ t j ’ • - . )  an~ us ing argument s

T t=p+1
similar to those given in the proof of (I), we can see that as

T -
~~ V~~ converge s in probabi l i ty  to

(28) a~ = lim E ( Z ~~~)
T - ~

= lim E( V ~~~1)
T - *c o

a2 T t-p-1 K 
—1 2 4 ~ 2= lim — z ( X Z o

~~~i
A (
~~) 

ø (lf)X
t 

+ a ~T -~~ T t=p+i. u=0 i=i. ‘ u=0

2 4~~ 2
= a + a Z ~u=0 U

V 
- - V - -- - V 

~~~~~~~~ 
-

-- — - 

~~t5 V. 
~~~~



-:: 
~~~ 

; r~~~ ~r. t,1: rn at  I::: .~~: t i es a
-~~T t=~~ l

L n  ~~~~~~~~~~~~~~~ eond~ tL’:n

(
~~ E [W~~ - ( ~~~4 I> ~~~ E - ~; , )]

t=i-’-1 - V

fc. r any E > 0, wn~ r-~ i( - ) ~ecct es  the ind.ieatc r f s n : t ic n .

Ccni~ t~ on (29)  can be .~-hown to cold by the use of tn~ same arg’ . rnent

as given ~n the r roof at’ Theorem 2, page 2C4 V5 .  in Hannan ar.i He :/d-.

[1~~] .  (See  a l V - ;o the proof of Theor-~rn 2.6.1 in An sersor [;]).

Thus  tnro~ gh equations (28) an~ (29) . ZTn sa t iV : fi e  o or s d i t i on s  ( 1)

and (2) of ~rcwn [6]. It fo l lows  by Theorem 2 given there tnat

has a limiting normal distribution as T ~~~~, with mear. 0 and

va r iance : .  Finally,  using Theorem 7.7.1 in Anderson [~~ ] ana the

V result fol lowIng equat ion ( 2 7 ) ,  we can conclu de tha t

~logF 
= (~~

rn
Z(,)Y~~

l
G
I_ l 

j

nas a limiting normal distribut Ion a~ T -
~~ with mear. 0

art variance equal to

- Urn Z = a2
~ 0 + a 4 

~ = O
4 j.~ + C~~~0.

u=0 u=0

The asymptotic normal i ty  of all o ther  elements of ~ W ’G ’ 1 € can

be obtained in the same manner. A similar argument can also be u s e d

to show that  the l im i t i ng  dI s t r i b u t i o n  of an a r b i tr a r y  l inear

combina t ion  of the elements of ~ W ’G ’~~~€ ,

~ C ’ W ’G ’~~~ E, wi th C ( c 1,. . - 
~c r+k+p+q Y an

arbitrary constant vector, Is normal with mean C and variance

V 

G 2 C~ VC ,

__:r:

~~~~~

-_

is  the matrix defined by ( i r  

—

~~~~~~~~~
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continuity theorem for characteristic functions , we see that

2
! W ’G’ 1 € = 2_. ~10~~ has a limiting multivariate normal distribution

N(0,s’V) as T ~ ~~~~, and thus the theorem IS established.

V V ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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